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Support vector machine is a new tool from Artificial Intelligence (AI) field has been successfully applied
for a wide variety of problem especially in time-series forecasting. In this paper, least square support
vector machine (LSSVM) is an improved algorithm based on SVM, with the combination of self-organizing
maps(SOM) also known as SOM-LSSVM is proposed for time-series forecasting. The objective of this
paper is to examine the flexibility of SOM-LSSVM by comparing it with a single LSSVM model. To assess
the effectiveness of SOM-LSSVM model, two well-known datasets known as the Wolf yearly sunspot data
and the Monthly unemployed young women data are used in this study. The experiment shows
SOM-LSSVM outperforms the single LSSVM model based on the criteria of mean absolute error (MAE)
and root mean square error (RMSE). It also indicates that SOM-LSSVM provides a promising alternative
technique in time-series forecasting.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Time series analysis and forecasting is an active research area
over the last few decades. Various kinds of forecasting models have
been developed and researchers have relied on statistical tech-
niques to predict time series data. The accuracy of time-series fore-
casting is fundamental to many decisions processes and hence the
research for improving the effectiveness of forecasting models has
never been stopped (Zhang, 2003). Forecasting is an important
problem that spans many fields including business and industry,
government, economics, environmental sciences, medicine, social
science, politics, and finance. The reason that forecasting is so
important is that prediction of future events is a critical input into
many types of planning and decision making. In the past, conven-
tional statistical methods were employed to forecast time series
data. However, the data time series are often full of non-linearity
and irregularity.

To address this, numerous artificial techniques, such as artificial
neural networks (ANN) are proposed to improve the prediction
result. The support vector machine (SVM) method, which was first
suggested by Vapnik (1995) has recently been used in a range of
applications such as in data mining, classification, regression and
time-series forecasting (Zhang, 2003). The ability of SVM to solve
ll rights reserved.
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non-linear regression estimation problems makes SVM successful
in time-series forecasting.

However, Suykens, Van Gestel, De Brabanter, De Moor and
Vandewalle (2002) introduced a revolution of support vector ma-
chine called least square support vector machine (LSSVM). LSSVM
is modified from existed SVM. This reformulation greatly simplifies
the problem in such a way that the solution is characterized by a
linear system, more precisely a Karush–Kuhn–Tucker (KKT) linear
system, which takes a similar form as the linear system that one
solves in every iteration step by interior point methods for stan-
dard SVM.

There are various studies within the literature that used differ-
ence combining method shows that the result is better let alone
using a single model. For instance, (Tay & Cao, 2001) suggest a
two-stage architecture by integrating a SOM and SVR to better cap-
ture the dynamic input–output relationships inherent in the finan-
cial data. Hsu, Hsieh, Chih, & Hsu (2009) used a two-stage
architecture by combining a SOM and SVR. The proposed technique
is used to predict the stock price market. The result showed that
the proposed technique is much better than using a single model.
Kuo, An, Wang, and Chung (2006) proposed an integration using
SOFM and genetic K-means. A real-world problem of the fright
transport industry market segmentation is employed. The results
also indicate that the proposed method is better than the other
two methods used. Other than that, Kuo, Ho, and Hu (2002)
integrated a SOFM and K-means for market segmentation. The sim-
ulation results indicate that the proposed scheme is slightly better
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than the other conventional two-stage method with respect to the
rate of misclassication, and the real-world data on the basis of
Wilk’s Lambda and discriminate analysis.

The main purpose of this study is to investigate the applicability
and capability of time-series forecasting by comparing between
SOM - LSSVM and a single LSSVM model for modeling of time-
series forecasting. To verify the application of this approach, two
case studies, with two datasets were used in this paper. This paper
is organized as follows. In Section 2, an explanation on the basic
idea of LSSVM is presented. We also covered a bit about explana-
tion on SOM and the idea of Integration of the SOM and LSSVM.
In Section 3, an experimental and result were carried out. While
in section 4, we will discuss about comparison from the experi-
ment. Finally, some conclusions are drawn. To verify the applica-
tion of this approach, the benchmarked datasets are used in this
study. The benchmarked datasets is well-known data sets that
handled in real life time series application. There is the Wolf Yearly
Sunspot Number from 1700 to 2001. The other set of data is
monthly unemployed young women between ages 16 And 19 in
the United States from January 1961 to August 2002.

2. Methodology

2.1. Least square support vector machine

Least square support vector machine (LSSVM) is a modification
of the standard support vector machine (SVM) and was develop by
Suykens et al. (2002). LS-SVM is used for the optimal control of
non-linear Karush–Kuhn–Tucker systems for classification as well
as regression.

Consider the first a model in the primal weight space of the fol-
lowing from:

yðxÞ ¼ wTuðxÞ þ b; ð1Þ

where the x 2 Rn; y 2 R, and uð:Þ : Rn ! Rnh is the mapping to the
high dimensional feature space. Given a sample of training set
fxi; yig

l
i¼1 can be formulated then the following optimization prob-

lem in the primal weight space. Still combine the functional com-
plexity and fitting error, the optimization problem of LSSVM is
given as:

Min Jðw; nÞ ¼ 1
2

wT wþ y
1
2

Xl

i¼1

n2
i ; ð2Þ

Such that : yi ¼ wTuðxiÞ þ bþ ni; i ¼ 1;2;3; . . . l: ð3Þ

Note that this is in fact nothing else but a ridge regression cost func-
tion formulated in the feature space. However, one should be aware
that when w becomes infinite dimensional, one cannot solve this
primal problem. This formulation consists of equality instead of
inequality constraints. Constructing the Lagrangian:

Lðw; b; n; aÞ ¼ Jðw; b; nÞ �
Xl

i¼1

ai wTuðxiÞ þ b� yi þ ni

� �
ð4Þ

where ai 2 R are the Langrange multipliers, which can be positive or
negative in LSSVM formulation. From the optimization conditions,
the following equations must be satisfied:

@L
@w ¼ 0! w ¼

Pl

i¼1
aiuðxiÞ;

@L
@b ¼ 0!

Pl

i¼1
ai ¼ 0;

@L
@ni
¼ 0! ai ¼ cni;

@L
@i ¼ 0! wTuðxiÞ þ b� yi þ ni ¼ 0;

For i ¼ 1;2;3; . . . ; l:
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After elimination of the variables w and n one obtains the following
matrix solution:
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; ð6Þ

with y = [y1, . . . , yl], 1v = [1, . . . , l], n = [n1, . . . , nl], a = [a1, . . . , al], and
Mercer’s condition is applied within the X matrix:

Xij ¼ yiyjuðxiÞTuðxiÞ ¼ yiyjKðxi;xjÞ: ð7Þ

The fitting function namely the output of LSSVM Regression is:

yðxÞ ¼
Xl

i¼1

aiKðx; xjÞ þ b; ð8Þ

where ai, b are the solutions to the linear system. Although the
choices of the kernel function K(xi, xj) in LSSVM are the same as
those in SVM, more emphasis has been put on the powerful RBF ker-
nel. Note that in the case of RBF Kernel, one has only two additional
tuning parameter which is c, r and d2 as a bandwidth kernel
(Suykens et al., 2002):

K x; xið Þ ¼ exp � jjx� xijj2

d2

 !
: ð9Þ
2.2. Self-organizing map

The self-organizing map (SOM) which is also known as self
organizing feature map (SOFM). SOM proposed by Professor Teuvo
Kohonen, and is sometimes called as Kohonen map (Kohonen,
2001) is an unsupervised and competitive learning algorithm.
SOM have been used widely for data analysis in some areas such
as economics physics, chemistry as well as medical applications.
SOM can be viewed as a clustering techniques that identifies clus-
ters in a dataset without rigid assumptions of linearity or normal-
ity of more traditional statistical techniques (Mostafa, 2010).

The objective of SOM is to maximize the degree of similarity of
patterns within a cluster, minimize the similarity of patterns
belonging to different clusters, and then present the results in a
lower-dimensional space. Basically, the SOM consists of two layer
of artificial neurons: the input layer, which accepts the external
input signals, and the output layer (also called the output map),
which is usually arranged in a two dimensional structure. Every
input neuron is connected to every output neuron, and each
connection has a weighting value attached to it. Fig. 1 illustrates
the architecture of SOM.

Output neurons will self organize to an ordered map and neu-
rons with similar weights are placed together. They are connected
to adjacent neurons by a neighborhood relation, dictating the
topology of the map (Moreno, Marco, & Olmeda, 2006).
Fig. 1. The SOM architecture.



Table 1
The series data that are used to compare forecast methods.

Series Data Training set Forecasting set

A Wolf yearly sunspot number from 1700 to 2001 302 30

B Monthly unemployed young women between ages 16 and 19 in the United States from January 1961 to August 2002 500 50

Table 2
Performance metrics and output variables.

Performance metric Calculation

MAE 1
N

PN
t¼1jyt � ŷt j

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1ðyt � ŷtÞ2

q
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Given a winning neuron I upon the presentation of an input x,
its updating neighborhood XI starts with a wide field an gradually
shrinks with time until there are no other neurons inside, i.e.,
XI ¼£. More specifically, we can write the updating equation
for a neuron i at iteration t as:

wiðt þ 1Þ ¼
wiðtÞ þ gðtÞðx�wiðtÞÞ; if i 2 XIðtÞ;
wjðtÞ; if i R XIðtÞ;

�
ð10Þ

where g(t) is the monotonically decreasing learning rate. Alter-
nately, by using the neighborhood function hIi(t), the above equa-
tion could be rewritten as:

wiðt þ 1Þ ¼ wiðtÞ þ hIiðtÞðx�wiðtÞÞ: ð11Þ

Here, the neighborhood function is defined as:

hIiðtÞ ¼
gðtÞ; if i 2 XIðtÞ;
0; if i R XIðtÞ:

�
ð12Þ

More often, the neighborhood function takes the form of a radial ba-
sis function that is appropriate for representing the biological lat-
eral interaction (Kohonen, 2001; Rui Xu, 2009).

2.3. Integrating the self-organizing map (SOM) and least square
support vector machine (LSSVM)

A time series is a sequence of data points recorded sequentially
in time. Time-series forecasting is used to predict future values
based on past values and other variables. However, the datasets
is full with non-linearity. To address of this issues, a hybrid model
is employed to solve the problem. At this stage, we used a divide
and conquer approach. Jacobs, Jordan, Nowlan, and Hinton
(1991) were inspired by the divide-and-conquer principle that is
often used to attack complex problems, i.e., dividing a complex
problem into several smaller and simpler problems so that the ori-
ginal problem can be easily solved. A proposed model is used to
predict the better forecasting result.

In the first stage, the datasets are divided into several group or
cluster. In order to do this, SOM is used to cluster the training data
into several disjointed clusters. Each cluster contains similar ob-
jects (Huang & Tsai, 2009). After the clustering process, an individ-
ual LSSVM model for each cluster is constructed. LSSVM can do a
better forecast for each group or cluster. Meanwhile, the typical
kernel functions used in this study’s radial basis function (RBF) ker-
nel (see Eq. (9)) where d2 is the bandwidth of the RBF kernel em-
ployed some diverse kernel functions for their modeling and
demonstrated that the RBF kernel has superior efficiency than
other kernel. After the running an individual LSSVM for each clus-
ter, the result will be combined in order to get the final result.

3. Experiment and result

3.1. Datasets

In this research, we examined the two well-known data sets,
which is Wolf Yearly Sunspot data and monthly unemployed
young women data (Wei, 2006). These data are used as a case
study for this research and have been utilize the forecasting
through an application aimed to handle the real life time series.
These data are well known and frequently used in time series fore-
casting. The sunspot data are collected from year 1700 to 2001,
giving a total of 332 observations. While, the unemployed data
are collected from January 1961 to August 2002, giving a total of
550 observations. These data are used to demonstrate the differ-
ences between non-clustered data and clustered data using SOM.

The dataset will be divided into training set, containing the first
90% values and a test set, with the last 10%. Only the training set is
used for model selection and parameter optimization, being the
test set used to compare the proposed approach with other models.
Information regarding the series distributed among the training
and forecasting sets are given in Table 1.

3.2. Performance criteria

The performances of the each model for both the training data
and forecasting data are evaluated. In this study, the statistical
metrics is used to evaluate the result. The evaluation based on
the mean absolute error (MAE) and root mean square error (RMSE),
which are widely used for evaluating results of time-series fore-
casting. The MAE and RMSE are defined as in Table 2, where yt

and ŷt are the observed and the forecasted rice yields at the time
t. The criterions to judge for the best model are relatively small
of MAE and RMSE in the modeling and forecasting.

Before the training process begins, data normalization is often
performed. The linear transformation formula to [0, 1] is used:

yt ¼
xt

xmax
ð13Þ

where yt and xt represent the normalized and original data; and xmax

represent the maximum values among the original data.

3.3. Testing the data using SOM - LSSVM

In this section, we examined the datasets using a proposal
model. In order to guarantee a valid result for making predictions
regarding to the new data, the dataset was randomly divided into
a training set and a test set. The training set is used for model
selection and parameter optimization, while the test set evaluates
the prediction accuracy of the trained model.

3.3.1. SOM implementation
The determination of the size of SOM is not an easy task,

because the statistical properties of the data are not always avail-
able. In this study, we used Statistica 8 as a software to run the
SOM. The initial map size is set at 3 � 3 units using a trail-and-
error approach. The training cycle set at 1000 epochs. While a
learning rate starts at 0.1 and end at 0.02, we do set the neighbor-
hood partitions started at 3 and end with 0. One characteristic of



Table 3
The result for the training and forecast using a hybrid model of SOM - LSSVM.

Series data Input Training Forecasting

MAE RMSE MAE RMSE

A 2 0.056142 0.071336 0.04222 0.054772
4 0.043797 0.05742 0.043786 0.066295
6 0.044466 0.058136 0.046417 0.062725
8 0.031036 0.040833 0.04425 0.058988

12 0.040535 0.053167 0.060639 0.068518

B 2 0.027005 0.034989 0.023153 0.029383
4 0.028979 0.036853 0.025106 0.032514
6 0.029542 0.038076 0.026983 0.032767
8 0.032476 0.040366 0.03044 0.040346

12 0.029503 0.038907 0.028978 0.038645

Table 4
The result for the training and forecast using a single LSSVM model.

Series data Input Training Forecasting

MAE RMSE MAE RMSE

A 2 0.0506 0.0692 0.0769 0.0983
4 0.0402 0.0527 0.054 0.0712
6 0.0427 0.0564 0.0563 0.0736
8 0.0408 0.0538 0.058 0.0747

12 0.036 0.0473 0.064 0.0797

B 2 0.0419 0.0533 0.0337 0.0422
4 0.0337 0.044 0.0293 0.0394
6 0.0338 0.0441 0.027 0.0365
8 0.0329 0.0425 0.028 0.0375

12 0.0296 0.0383 0.0286 0.0378
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the SOM is that similar types of input data are mirrored to a large
extent by their geographical vicinity within the representation
space.
3.3.2. LSSVM implementation
In our experiment, we chose the Radial Basis Function (RBF)

kernel where d2 is the bandwidth of the RBF kernel as our kernel,
because it tends to achieve better performance. There is no theory
that can used to guide the selection of number of input. In this
study the number inputs (I), 2, 4, 6, 8 and 12 were used for the
datasets. In determining the kernel bandwidth, d2 and the margin
c is set at 50 and 10, respectively. The motive of choosing LSSVM
is because it involves the equality constraints. Hence, the solution
is obtained by solving a system of linear equations. Efficient and
scalable algorithms, such as those based on conjugate gradient
can be applied to solve LSSVM.
3.3.3. Result
The result for the training and forecast using a hybrid model of

SOM - LSSVM are shown in Table 3.
By considering these training data, the lowest RMSE and MAE

for series A data were calculated with input equals to eight and
two for both training and forecasting. Meanwhile for B’s series of
Table 5
Comparative performance between SOM - LSSVM and LSSVM For two data series.

Data Model Training

MAE

A SOM - LSSVM 0.031036
LSSVM 0.0402

B SOM - LSSVM 0.027005
LSSVM 0.0338
datasets, the lowest RMSE and MSE for both training and forecast-
ing were observed from input two.
3.4. Testing the data using single LSSVM

The selection of the number of input corresponds to the number
of variables play important roles for many successful applications
of this model. The issue of determining the optimal number of in-
put is a crucial yet complicated one. In this section, we examined
the datasets using a single LSSVM model only. We used the same
parameters as the LSSVM’s parameter for a hybrid model.
3.4.1. Result
The result for the training and forecast using a single LSSVM

Model are shown in Table 4.
Table 4 summarizes the statistical results for training and fore-

casting using LSSVM models. By considering these training data,
the lowest RMSE and MAE for A series data is calculated for LSSVM
when no of input is twelve. For forecasting data, the lowest RMSE
and MAE are calculated from four inputs. Meanwhile, the B’s data
was calculated as well. From the observation, the lowest RMSE and
MAE was calculated from input equals to twelve, while for fore-
Forecasting

RMSE MAE RMSE

0.040833 0.04425 0.058988
0.0527 0.054 0.0712

0.034989 0.023153 0.029383
0.0441 0.027 0.0365
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casting the lowest RMSE and MAE is come from input equals to six
(see Table 4).

4. Comparison

For comparison purpose, the training and the forecast perfor-
mance of a hybrid model SOM - LSSVM was compared with the
single LSSVM model. Table 5 shows the comparison of training
and forecasting precision among the two approaches based on
two statistical measures for two series of datasets.

It can be observed that in the data sets for testing process,
SOM - LSSVM have the smaller RMSE and MAE than a single LSSVM
model in term of A series data. The results also show that the
SOM - LSSVM model is outperform LSSVM for B series data as well.
It means that a hybrid model of SOM - LSSVM is more competent
during forecasting and training in term of RMSE and MAE.

This experiment result showed that SOM - LSSVM significantly
outperformed LSSVM. The result may be attributable to the fact
that SOM - LSSVM offer a better prediction. The findings in this
study are compatible with the conclusions by Tay and Cao (2001).

5. Conclusion

This study used to compare a time-series forecasting between
SOM - LSSVM and LSSVM for A and B data series. The SOM algo-
rithm clusters the training into several disjointed cluster. After
decomposing the data, LSSVM can do a better prediction. The
results suggest that the two-stage architecture provides a promis-
ing alternative for time-series forecasting.

From the experimental results comparing the performance of
for A and B data, it indicates that SOM - LSSVM perform better than
single LSSVM. We can concluded that SOM - LSSVM provides a
promising alternative technique in time-series forecasting.
Acknowledgement

This research is supported in part by the E-Science, Ministry of
Science, Technology and Innovation (MOSTI) fundamental research
grant scheme under vote number 79346.

References

Hsu, S.-H., Hsieh, J. J. P.-A., Chih, T.-C., & Hsu, K.-C. (2009). A two-stage architecture
for stock price forecasting by integrating self-organizing map and support
vector regression. Expert Systems with Applications, 36, 7947–7951.

Huang, C.-L., & Tsai, C.-Y. (2009). A hybrid SOFM–SVR with a filter-based feature
selection for stock market forecasting. Expert Systems with Applications, 36(2,
Part 1), 1529–1539.

Jacobs, R. A., Jordan, M. A., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation, 3, 79–87.

Kohonen, T. (2001). Self-organizing maps. New York: Springer; p.501.
Kuo, R. J., An, Y. L., Wang, H. S., & Chung, W. J. (2006). Integration of self-organizing

feature maps neural network and genetic K-means algorithm for market
segmentation. Expert Systems with Applications, 30, 313–324.

Kuo, R. J., Ho, L. M., & Hu, C. M. (2002). Integration of self-organizing feature map
and K-means algorithm for market segmentation. Computers & Operations
Research, 29, 1475–1493.

Moreno, D., Marco, P., & Olmeda, I. (2006). Self-organizing maps could improve the
classification of Spanish mutual funds. European Journal of Operational Research,
147, 1039–1054.

Mostafa, M. M. (2010). Clustering the ecological footprint of nations using Kohonen’s
self-organizing maps. Expert Systems with Applications, 37, 2747–2755.

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002).
Least square support vector machines. Singapore: World Scientific.

Tay, F. E. H., & Cao, L. J. (2001). Improved financial time series forecasting by
combining support vector machines with self-organizing feature map.
Intelligent Data Analysis, 5, 339–354.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Wei, W. W. S. (2006). Time Series Analysis. Univariate and Multivariate Methods.

Pearson: New York.
Xu Rui, D. C. W. (2009). Clustering. IEEE.
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural

network model. Neurocomputing, 50, 159–175.


	A hybrid model of self-organizing maps (SOM) and least square support  vector machine (LSSVM) for time-series forecasting
	Introduction
	Methodology
	Least square support vector machine
	Self-organizing map
	Integrating the self-organizing map (SOM) and least square support vector machine (LSSVM)

	Experiment and result
	Datasets
	Performance criteria
	Testing the data using SOM-LSSVM
	SOM implementation
	LSSVM implementation
	Result

	Testing the data using single LSSVM
	Result


	Comparison
	Conclusion
	Acknowledgement
	References


