
Expert Systems with Applications 38 (2011) 9325–9333
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Research of fast SOM clustering for text information

Yuan-chao Liu ⇑, Chong Wu, Ming Liu
Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

a r t i c l e i n f o
Keywords:
Self organizing maps
Text mining
Clustering efficiency
Feature coding
Similarity computation
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.01.126

⇑ Corresponding author.
E-mail address: ycliu@hit.edu.cn (Y.-c. Liu).
a b s t r a c t

The state-of-the-art text clustering methods suffer from the huge size of documents with high-dimen-
sional features. In this paper, we studied fast SOM clustering technology for Text Information. Our focus
is on how to enhance the efficiency of text clustering system whereas high clustering qualities are also
kept. To achieve this goal, we separate the system into two stages: offline and online. In order to make
text clustering system more efficient, feature extraction and semantic quantization are done offline.
Although neurons are represented as numerical vectors in high-dimension space, documents are repre-
sented as collections of some important keywords, which is different from many related works, thus the
requirement for both time and space in the offline stage can be alleviated. Based on this scenario, fast
clustering techniques for online stage are proposed including how to project documents onto output lay-
ers in SOM, fast similarity computation method and the scheme of Incremental clustering technology for
real-time processing, We tested the system using different datasets, the practical performance demon-
strate that our approach has been shown to be much superior in clustering efficiency whereas the clus-
tering quality are comparable to traditional methods.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In an effort to keep up with the tremendous and ever-growing
amounts of electronic documents from World Wide Web and dig-
ital libraries, people are much interested in developing technolo-
gies to organize and navigate massive text data for searching and
exploring data, thus make it easier for end users to find the infor-
mation they want efficiently and accurately. Data clustering is one
important technique for grouping similar data items together for
convenient understanding.

By organizing massive texts into some meaningful clusters, peo-
ple can observe these data from a high-level point of view. In many
occasions, people’s requirements cannot be formulated clearly.
Whereas by examining well organized structure of massive data
from a high level, they may find something valuable or something
unknown before. Thus it is convenient for discovering new interest
and narrows searching range, and alleviates reading labor. When
applied to textual data, clustering methods try to identify inherent
groupings of text documents so that a set of clusters is produced in
which clusters exhibit high intra-cluster similarity and low inter-
cluster similarity (Cios, Pedrycs, & Swiniarski, 1998; Lois, Olivier,
& Francois, 2007).This problem has received a special and in-
creased attention from researchers in the past decades (Aliguliyev,
2009; Saraçoğlu, Tütüncü, & Allahverdi, 2007; Saraçoğlu, Tütüncü,
& Allahverdi, 2008).
ll rights reserved.
The focus of this paper is on fast clustering technologies of
documents. Conventional data clustering methods, including
agglomerative hierarchical clustering and partition based cluster-
ing algorithms; frequently perform unsatisfactorily for large text
collections, since the computation time of many text clustering
methods increase very quickly with the number of data items. Poor
clustering results degrade intelligent applications such as event
tracking and information retrieval. Most text clustering systems
are less efficient because of two reasons: (1). the time cost of
similarity computation. Similarity computation is the crucial
component for text clustering system, and is usually done in
high-dimension space, as documents are usually coded into high-
dimension vectors by VSM (Vector Space Model) (Aliguliyev,
2009; Lee & Yang, 2009; Salton, wong, & Yang, 1975; Song, Li, &
Park, 2009); (2) the frequency of similarity computation. Different
from text categorization technology, similarity computation for
text clustering system is more frequent, when the size of docu-
ments increases, the time complexity and storage space consumed
become more and more intolerable for users. In fact, for many
applications such as news group filtering, text crawling, and
document organization, fast clustering and organization of text
documents are required to process data in a timely fashion (Aggar-
wal et al., 2006; Liu, Cai, Yin, & Huang, 2006).

In this paper, we use Kohonen’s Self Organizing Map (Kohonen,
1982), which has been widely used for text clustering (Chow,
Zhang, & Rahman, 2009; Hung, Chi, & Chen, 2009), as the main
framework. As similarity computation is very crucial for text clus-
tering, and has much impact on clustering efficiency, we propose

http://dx.doi.org/10.1016/j.eswa.2011.01.126
mailto:ycliu@hit.edu.cn
http://dx.doi.org/10.1016/j.eswa.2011.01.126
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

Similarity Computation

Whole & Incremental

 Text Clustering

Text

documents

Keyword Identification &

Document Coding

Document

Clusters

N D

Constructing Space &

Neurons Coding

Fig. 1. The main framework of our system.

9326 Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333
one novel feature representation and similarity computation
method to make SOM text clustering much faster. Each document
is coded as the collection of some keywords extracted from the ori-
ginal document, and will directly be input to SOM, whereas each
output layer node of SOM are coded as numerical vector as that
of most Kohonen Networks. In order to directly separate docu-
ments into different groups, ring topology (Liu, wu, Liu, & wang,
2009) is adopted as our SOM structure, thus the number of groups
can be any integral values. Like Kohonen Networks, it consists of
two layers, input layer and competitive layer; the input layer re-
ceives input word vector representing a text, and a competitive
layer indicating clusters; each node in this layer corresponds to
one cluster (typically in SOM, a cluster may be formed from many
nodes). Nodes in competitive layer are competitive with each other
based on similarity between their weight vectors and input vec-
tors; the winner node in that layer is the node with highest simi-
larity between its corresponding weight vector and the given
input vector.

The main contributions of this paper are as follows:

(1) Text Clustering has been extensively researched with a large
number of machine learning and NLP-based techniques,
most of them explored representing both document and
neuron as vectors in one same high-dimension space, thus
much computation time will be inevitably consumed. In
many traditional SOM models, both documents and neurons
are coded into high-dimension vector in one feature space.
In this paper only neurons are coded into high-dimension
vectors, which are same as many related works, whereas
all documents are coded into sets of some words extracted
from the original document. Thus both time complexity
and space complexity can be reduced greatly. The difference
between our approach with other methods such as PCA
(Aguado, Montoya, Borras, Seco, & Ferrer, 2008; Sebzalli &
Wang, 2001), LSI (Kontostathis & Pottenger, 2006; Wei,
Yang, & Lin, 2008),random projection (Avogadri & Valentini,
2009; Lonardi, Szpankowski, & Yang, 2006) and co-occur-
rence (Morita et al., 2004; Tjhi & Chen, 2008) is that the fea-
tures are not reduced or reformed semantically, thus need
no extra preprocess time. Besides, these methods can also
be combined with ours to achieve better efficiency.

(2) In order to solve the problem of computing similarity
between document and neuron in our coding scheme, we
give the corresponding similarity computation technologies,
and the solution for mapping-error problem has also been
proposed. The devised text clustering technique outper-
forms VSM + SOM across all benchmark data sets, as exten-
sively verified through experiments. Especially when the
size of documents is large, the actual efficiency improve-
ments are more apparent. Thus it is suitable for applications
where the documents to be processed are large and less
clustering time is preferred, such as observing document
sets from many different angels in short time or clustering
results returned from searching engine.

(3) In addition, we also addressed the problem of incremental
document clustering which allows for full utilization of pre-
vious clustering results and incremental reconstruction of
SOM output layer with an emphasis on efficiency.

The main framework of our text clustering system is shown in
Fig. 1.

The rest of this paper is organized as follows: Section 2 discuss
the related works. Section 3 gives our adapted SOM model for text
clustering; Section 4 introduces the feature coding method of both
documents and neurons. Section 5 presents the fast similarity com-
putation methods proposed; Section 6 discusses the incremental
approach to clustering documents. then, in Section 7, the experi-
ments and evaluation results are explained and discussed. Finally,
we conclude and discuss future work in the last section.
2. Related works

SOM has been extensively applied in many areas for data clus-
tering and achieved remarkable results. It is first proposed by pro-
fessor Kohonen in Helsinki University (Kohonen & Kaski, 2000).
SOM is an unsupervised-learning neural-network clustering meth-
od that produces a similarity graph of input data, which is much
similar to the self-organizing characteristics of human brain. It
consists of a finite set of models that approximate the open set
of input data. The original SOM algorithm is a recursive regression
process. A considerable amount of theoretical justifications is pres-
ent in the literature to support SOM. It has been proven that, in text
clustering research, SOM is one of the best learning algorithms
(Huang, Ke, & Yang, 2008; Isa, Kallimani, & Lee, 2009).

The time complexity of SOM is O (k0m n), where k0is the
number of neurons, m is the training times and n is the document
number (m⁄n samples need to be inputted to train the network). As
for the clustering of massive documents, Kaski and his colleagues
developed famous WEBSOM system with SOM (Kaski, Honkela,

Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333 9327
Lagus, & Kohonen, 1998) in 1998. WEBSOM displays the results of
text clustering graphically for browsing collection of documents.
After that Kohonen and his colleagues have also implemented a
modified version of WEBSOM to apply it more practically to a mas-
sive document collection in 2000 (Kohonen et al., 2000).

The efficiency of text clustering system depends closely on fea-
ture coding and similarity computation. Many SOM variants use
VSM (Chow, Zhang, & Rahman, 2009; Pullwitt, 2002) to represent
both documents and neurons, and calculate the similarity between
them. Feature reduction or selecting features from text documents
becomes one of the key issues in text clustering and received a fair
amount of research with various methods. A systematic compari-
son study of dimension reduction techniques has been done by
Tang, Bin Tang, Shepherd, Heywood, and Luo (2005) for text clus-
tering problem. Sinka and David have proven that each document
can be represented by only a few words (Sinka & Corne, 2005).
They also argued that frequency is enough for represent docu-
ments and complex coding scheme may cost much more time. Cur-
rently in many text clustering systems, all documents and neurons
are represented in high-dimension space (Hung, Chi, & Chen, 2009;
Lee & Yang, 2009a; Lee & Yang, 2009; Martı́n-Guerrero & Palo-
mares, 2006), thus the frequent similarity computation is very
important for clustering efficiency.
The preprocess of documents
3. Adapted SOM model with ring topology

In many SOM variants, e.g. in the WEBSOM, clusters were
spread over several neurons and the partition of documents all de-
pends on the density. The number of neurons in the map should be
much larger than the perceived number of clusters in SOM.
Whereas in our paper, we wish each neuron give a direct partition
of input documents, I.e., each neuron represents one document
class. The rectangular topology used by many SOM variants is hard
to achieve this goal. For example, if there are 5 classes in the input
documents, there usually need 2⁄3 = 6 neurons for rectangular
topology, thus there will be one redundant neuron. Fig. 2. shows
the ring output layer topology of SOM used in this paper. The
advantage of this topology is that sector number (node number)
can be any integers, and it will be possible to reflect topic distribu-
tion of the input documents more finely and make full use of neu-
rons. Besides, the number of neighboring neurons for each neuron
is same, thus it can guarantee the balance of networks and avoid
edge effect which usually happens by using rectangular or hexag-
onal topology. In fact when there is need to expand output layer,
neurons can be inserted gradually to avoid lack-of-use phenome-
non of neurons.

Ring topology can be suitable for the partition of any size. If
there is need to create new cluster in incremental clustering, the
only thing to do is create one new neuron. Whereas for rectangular
topology, at least one row or column will be inserted. In this paper,
our focus in on fast clustering technology, thus the Number of clus-
ters is supposed to be known beforehand and the network size has
N1

N2N3

N4

N5

N6
N7

N8

N9

N10

N1
N2

N3

N4

N5

N6
N7

N8

N9

a b

Fig. 2. The ring topology of V-SOM. (N10 in Fig. 2. (b) is the newly inserted neuron).
been set fixed. In this way we can mainly discuss the core technol-
ogy of fast clustering. Besides, when it is need for dynamic cluster-
ing, neurons of any size can be inserted to reflect the input
documents (Liu, Wang, & Liu, 2009). From the related research,
there are many dynamic clustering methods (Fritzke, 1995; Rauber,
Merkl, & Dittenbach, 2002; Zhou & Fu, 2005).The basic idea is to in-
sert more neurons and make the network simulate input space.
4. One novel document coding scheme for fast text clustering

Due to high-dimension features and many iterations of most
text clustering algorithms, time cost of text clustering is remark-
able. There are usually two skills to improve efficiency: efficient
clustering algorithm and suitable coding method.

To achieve better clustering results, data model must accurately
capture salient features of input data. In this paper some high-fre-
quency keywords of each document are extracted to represent the
original document, as we believe that these words can capture
main contents of document, this can also be proven by many re-
lated works shown in Section 2. It is very critical to note that
selecting a few words to represent each document will make num-
ber of the dimensions greatly reduce and save a lot of time for on-
line stages. This is also partially where the efficiency of the model
comes from. (See Fig. 3)

Most of the text clustering methods that are in use today are
based on Vector Space Model (VSM) for representing document
vectors (Aas et al., 1999; Hammouda & Kamel, 2004; Salton, Wong,
& Yang, 1975; Salton & McGill, 1983; Salton, 1989).The advantage
of VSM is that all the documents and neurons can be represented
as vectors with same dimension number, thus the unstructured
or semi-structured documents can be transferred into structured
format, and provide possibility and convenience for calculating
their similarity. Besides, Main machine learning algorithms such
as NB (Naı̈ve Bayes), SVM (Support Vector Machine), and MLP
(Multilayer Perceptron) use numerical vectors as their input vec-
tors. Each word in documents corresponds to a feature in the vec-
tor representation. This leads to high dimensionality of text
documents. The main shortcoming of VSM applied in text cluster-
ing is that the computation will cost lots of time, especially when
large-scale documents need to be processed. As similarity compu-
tation is very frequent, the high computation cost will become
intolerable. Documents will usually be transferred into a bag of
words, which can represent main contents of the original docu-
ments. For most text clustering algorithm using VSM, in order to
represent documents in feature space, there are usually one stage
to transfer bags of words into vectors in high-dimension space.
This quantization step is computationally demanding.

For SOM text clustering, similarity computation between
document and neuron is also frequent. In this paper we represent
Tokenization

Remove stop words

Count Frequency

Select words above Frequency threshold

Fig. 3. The process of text document.

9328 Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333
document only as indexes of some keywords, other than the
widely used high-dimension vectors which share same feature
space with neurons. Thus both memory consummation and time
to code documents can be reduced greatly. In such scenarios, two
questions must be solved: one is how to construct feature space
for neurons and how to represent neurons in this space; another
is how to judge the similarity between neurons and documents
as they are represented in different way.

Algorithm 1. Dynamic construction of feature space and rep-
resentation of documents

Require: the keyword set of each document Keyword (di), the
feature set vectorX (n) of documents d0,d1,.,dn�1. Or
vectorX (0) if no documents were processed previously.

1. di Next Document;
2. For each keyword wij in Keyword (di) do
3. IFwij is invectorX, THEN
4. m the index of wijin vectorX;
5. Add m to Vector (di);
6. ELSE
7. add an element E to the end of vectorX, index{E,

vectorX}++, word{E, vectorX} = wij;
8. Add m to Vector (di);
9. END IF
10. End for
11. Output the elements of vectorX//feature sets for feature

space;
12. Output the elements of Vector(di)//each document.

In this paper we use the following methods to construct feature
space for neurons: as the documents to be processed are usually
from open-domain, i.e., the topic of these documents can not be
fixed, feature space will be generated dynamically according to
these documents. The dimension of feature space is only from
the documents because there is lack of domain lexicon or lexicons
are too big compared with the number of dimensions generated.
For example, suppose there are 3000 features generated from
1,000 documents, whereas the lexicon have 100,000 words, form-
ing feature space by lexicon will cost great time. In this situation,
selecting words from documents to form feature space will reduce
the sparse elements in feature vectors and reduce redundancy of
vector representation.

In such way, only neurons need to be represented as high-
dimension vector, whereas the document will be coded as indexes
of keywords. As number of document is usually much more than
that of neuron and the basic operation of SOM is similarity compu-
tation between documents and neurons, thus computation cost
will be degraded greatly. Another merit is that construction effi-
ciency of feature space can also be improved. We use Algorithm
1 to construct feature space and code both documents and
neurons.

The advantage of Algorithm 1 is that through one scan of all
documents, both feature space construction and document coding
can be done. In addition, it also can provide a good foundation for
incremental clustering: when new batch of documents are added,
the only thing to do is run the algorithm once by utilizing original
feature space. Because documents are coded as indexes, it is conve-
nient to compute the similarity between documents and neurons.

Our scenario in fact can also be helpful for many related re-
search besides SOM clustering algorithm, such as k-means, AHC
(Agglomerative Hierarchical clustering), and etc. Although there
are some work which use string vector to represent the document
feature such as NTSO (Taeho & Nathalie, 2005), the fast similarity
computation and the rectification of wrong mapping problem are
not solved in their work. The shortcoming of NTSO is that it need
to construct similarity matrix beforehand, thus much extra time
will be needed.

5. Fast similarity computation for text clustering

It is very frequent for SOM text clustering to compute similarity
between neuron and document. Same as the work of standard
SOM, each neuron vector is initialized as small elements. But in
our scheme, neurons and documents are coded in different space,
for one document di, we use Algorithm 2 to find the most similar
neuron.

Algorithm 2. Find the most similar neuron with document di

1. Get the string vector (di) of di;
2. For each neuron nj,do;
3. Get the corresponding Vector (nj) of nj;
4. For each index element from vector (di), denoted it as k, do;
5. According to k, find the kth dimension for the

corresponding numerical element nj[k] of the Vector (nj) of
neuron nj;

6. Sum (j) = Sum (j)+nj[k];
7. End For;
8. End For;
9. For all value of j,do
10. Find the maximum value of sum (j);
11. End For;
12. Select the corresponding neuron Nmax as the wining

neuron.
13. Output the similarity between document and neuron;
14. Update the weight of winning neuron and its neighboring

neurons.

In Algorithm 2, we assume that all words extracted from each
document are equally important. Thus for each document and neu-
ron, the only thing to do is add together the weight of some ele-
ments which is located according to the indexes from string
vector of document. For example, suppose the indexes of one doc-
ument is {f1, , f2, f3, f4, f5}, then its similarity with neuron nj can be
calculated as Vector (nj)[f1]+Vector (nj)[f2]+Vector (nj)[f3]+Vector
(nj)[f4]+Vector (nj)[f5]. Here fx means the fx-th dimension of nj.
Computing similarity in this way will cost much less time than co-
sine. According to the principle of SOM, we only need to find the
most similar neuron with one input document, how much they
are similar is not so important.

After the winner neuron Nwinner has been found, which has the
biggest similarity with the input document di, di will be mapped
ontoNwinner,Nwinnerand its neighboring neurons will have the
rights to adjust their weights of their dimensions which is indexed
by elements of document vector of di, i.e., add u to the correspond-
ing dimensions. For the above examples: Vector (nj)[f1] = Vector
(nj)[f1]+ u; Vector (nj)[f2] = Vector (nj)[f2]+u; Vector (nj)[f3] =
Vector (nj)[f3]+u; Vector (nj)[f4] = Vector (nj)[f4]+u; Vector
(nj)[f5] = Vector (nj)[f5]+u. Here the value of u can be set through
experimentation. After this, the documents which have the same
topic with document diwill also have the biggest similarity with
neuronnj, because the elements of nj on these dimensions will be
strengthened.

One problem to be solved is that, after one document d is input,
if another document d0 is input again, and d0 has different topic
from document d, then d and d0will be mapped onto one same
neuron nj by mistake because only a few dimensions will be ad-
justed in this method, and other dimensions of nj may have not ad-
justed and thus document d0 may have biggest similarity with

Neuron Vector

Vector of document d’Vector of Documents

with topic same with d

By restraining other dimensions of

neuron vector, documents of

different topic with d will not be

mapped onto this neuron.

Vector of Document d

Fig. 4. Prevention of mapping error by restraining other dimensions.

Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333 9329
neuron nj, as the other dimensions of neuron nj are not adjusted. nj

still have the same chance to be selected as the winner. This situ-
ation will happen especially when the training just begins as most
of dimensions of neurons have not been adjusted.

In order to overcome this problem, When add u to some dimen-
sions of neuron nj, we also subtract a value u0 to other dimensions.
In this way, when document d0 comes, which is about different to-
pic, as other dimensions have smaller weight than those of other
neurons, njcan not be selected as the most similar neuron with
d0. Whereas if another document d00 comes, which share same topic
with d, as most of its dimensions may be same as document d and
neuron nj, d00 can be mapped onto neuron nj. This can be shown in
Fig. 4. In addition, after one neuron has been adjusted, and has
been again calculated as the most similar with one document, then
one judgment will be done: if the dimensions to be modified have
no or little intersections with the last adjustment, then the modi-
fication will be rolled back.

General speaking, document vector formed by standard VSM is
high-dimension sparse matrix, and similarity computation in es-
sence is the computation between high-dimension vectors. In our
scheme features have not been subtracted or reduced, whereas
the high computation cost has been avoided, this is where the high
efficiency comes from. At the same time, we also give the corre-
sponding solutions about the impact of this method may have on
clustering quality.
6. Incremental clustering

For many online applications, input documents are dynamic, or
time is a critical factor for usability, thus incremental clustering is
an essential strategy (Agrawal, Han, Wang, & Yu, 2003; Agrawal,
Han, Wang, & Yu, 2004; Kifer, Ben-David, & Gehrke, 2004; Zamir
& Etzioni, 1999). This presents several challenges to traditional sta-
tic clustering algorithms. Application examples include topic
detection from a news stream, intrusion detection from continuous
network traffic, and etc. (Sahoo & Callan, 2006; Sascha & Michael,
2006; O’Callaghan, Mishra, Meyerson, Guha, & Motwani, 2002).

This paper combines an efficient Incremental clustering algo-
rithms with our feature coding and similarity computation strat-
egy to achieve fast clustering of text documents. Incremental text
clustering algorithms work by processing text documents one at
a time, incrementally assigning documents to their respective
clusters while they progress (Shi, 2005; Zhonghui, Junpeng, & Jun-
yi, 2007).A ‘‘good’’ incremental clustering algorithm has to find the
respective cluster for each newly introduced document without
significantly sacrificing the accuracy of clustering due to insertion
order or fixed object-to-cluster assignment.

Some incremental clustering methods include: GCS (Lihua, Lu,
Jing, & Zongyong, 2005), ART (Hsu & Huang, 2008; Keskin, _Ilhan,
& Özkan, 2010), Single-Pass Clustering (Asharaf & Narasimha Mur-
ty, 2003; Kärkkäinen & Fränti, 2007), K-Nearest Neighbor Cluster-
ing (González-Barrios & Quiroz, 2003), Suffix Tree Clustering
(STC)(Han et al., 2006). Among them, Single-Pass Clustering algo-
rithm basically processes documents sequentially, and compares
each document to all existing clusters. If the similarity between
the document and any cluster is above a certain threshold, then
the document is added to the closest cluster; otherwise, it forms
its own cluster. Usually, the method for determining the similarity
between a document and a cluster is done by computing the aver-
age similarity of the document to all documents in that cluster.

Suppose there are n documents in all, n1 documents are se-
lected as the base set to be clustered firstly, the remaining
n2(n2 = n � n1) documents are selected as the objects for incre-
mental clustering. There are usually three ways to process these
n1 + n2 documents:

(1). Run the clustering system for these n1 + n2 documents in
one time, which we call whole clustering, but the efficiency
may be very low, as previous clustering results can not be
fully utilized.

(2). Run the clustering system for n1 documents and n2 docu-
ments separately, and then merge their clustering results.
Suppose there are c(n1) clusters for n1documents and c(n2)
clusters for the newly added n2 documents, then the whole
text clustering system will be run twice, and additional com-
putation will also be done to merge these c(n1) clusters and
c(n2) clusters. As in our coding scheme, both clusters are
high-dimension vectors, thus the computation will also be
high.

(3). Utilize the clustering model formed by the n1 documents
(similar to Single-Pass Clustering), classify the remaining
n2 documents, and add them to some clusters, whereas for
the document which cannot be classified, create one new

Table 1
Data Sets Description.

Dataset Descriptions # Of
Docs.

Categories # of
Dims

DS1 20 Newsgroups 1000 20 1798
DS2 Documents crawled from

web
100,000 N/A 10892

9330 Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333
neuron and assign the document to it. The time complexity
is that of n1 documents plus the complexity of the similarity
computation between n2 and the clusters. The complexity of
latter will be relatively low due to our similarity computa-
tion method demonstrated in Section 4.

In this paper, we adopt the third as our incremental clustering
algorithm, as it is more efficient in our feature coding scheme.
The details are shown in Algorithm 3.

Algorithm 3. incremental clustering
1. Ln {neuron list created firstly}; Ld {list of incremental
documents};

2. For each document d in Ld, do
3. For each neuron n in Ln, do
4. Compute the similarity similarity(d,n) between d and n;
5. Find the neuron nmax which has the biggest similarity with

d;
6. If similarity(d,nmax)> threshold st,then
7. Add d to nmax, delete d from Ld;
8. Else then//d was not added to any cluster
9. Create a new neuron nnew;
10. Add nnew to Ln;
11. Add d to nnew, delete d from Ld;
12. End if
13. End for
14. End for
The incremental clustering algorithm in Algorithm 3 are based
on the above framework (see Sections 3 and 4). The algorithm
works incrementally by receiving a new document, and for each
cluster calculates their similarity. the cluster with the biggest sim-
ilarity will be selected, if the similarity value is greater than thresh-
old, the document will be assigned into that cluster, otherwise one
new neuron will be created, and assign that document to it.

In this paper, as there are lots of documents to be processed, we
combine both sampling technology, incremental clustering tech-
nology and our feature coding scheme to improve the clustering
efficiency further. Some documents (at least 50%) are selected to
construct clustering model, and the remaining documents will be
classified or clustered according to the clustering model con-
structed. It is believed that by this way the clustering quality will
not be affected so much, whereas the efficiency will be greatly
improved.

7. Experimental results and discussion

7.1. Experimental setup

The experimental evaluation was performed on two different
data sets: DS1 and DS2 separately. The first data set: DS1 is a sub-
set of the full 20-newsgroups collection of USENET news group
articles, which is the widely used text categorization datasets. Each
news group constitutes a different category, with varying overlap
between them. DS2 is news documents crawled from web, there
are much documents in DS2 so that the number of Categories
can not be easily determined manually. Since they are unlabeled,
this collection will be used to examine our system efficiency for
large-scale text clustering. Some clusters generated will be se-
lected randomly to be reviewed by human to evaluate its perfor-
mance. (See Table 1)
7.2. Evaluation methodology

In our approach, we use hard clustering where we assign only
one cluster to each input document. The first and important eval-
uation measure in this paper is the CPU time consumed and an-
other is clustering quality. In this paper the run time results
were measured on a PC with Intel Pentium IV 1.6 GHz CPU and
1 GB memory, running Windows XP.

The first clustering quality measurement is F-measure (Massey,
2005). The higher the overall F-measure, the better the clustering,
due to the higher accuracy of clusters generated mapping to the
original classes. For one generated cluster rand one predefined
class s:

recallðr; sÞ ¼ nðr; sÞ=ns ð1Þ
precisionðr; sÞ ¼ nðr; sÞ=nr ð2Þ

n(r,s) is document number of the intersection between r and s. nr is
document number of cluster r, ns is document number of class s. F
measure between cluster r and class s can be calculated as

Fðr; sÞ ¼ ð2�recallðr; sÞ�precisionðr; sÞÞ=ððprecisonðr; sÞ
þ recallðr; sÞÞ ð3Þ

The overall F measure can be calculated as

F ¼
X

i

ni

n
maxfFði; jÞg ð4Þ

Here n is the number of all documents. niis document number of
class i.In this paper, we use F measure for the clustering results of
DS1.

Because the size of DS2 is big, we select accuracy as the evalu-
ation method. Suppose there are m clusters are generated (for DS2,
several thousands of clusters may be generated), we select m0(in
this paper, we set m0 = 100) sample clusters from them to judge
the overall clustering quality. Suppose there are # of(ci) documents
in cluster ci, which is one of these m0 clusters, and the class Ckwhich
has the biggest document number in ci, denoted as #of(ci,Ck) will
be assumed as the dominant topic of this cluster, thus the accuracy
of cluster cican be calculated as

AccuarcyðciÞ ¼ #of ðci;CkÞ=#of ðciÞ: ð5Þ

The average accuracy of m0clusters,Accuracy(m0), which will be used
to judge the overall quality, can be calculated in the following way:

Accuracyðm0Þ ¼ 1
m0
Xm0�1

i¼0

AccuracyðciÞ ð6Þ

We tested the effectiveness of our text representation model in 7.3,
the comparison of clustering results and the effect of incremental
document clustering in 7.4. The analysis of clustering results and
the help for cognition are conducted in 7.5.

7.3. The experimental comparison of feature representation methods

Feature representation and feature quantization is a necessary
step for many related works. Their basic logics are: first construct
feature space using the keywords extracted from each document,

0

5

10

15

20

3 4 5 6 7 8 9 10 11 12
class number

tim
e

(:s
)

GHSOM
Our Approach

Fig. 7. Clustering time on DS1 (: s).

Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333 9331
and then represent each document as one vector in this space.
Whereas in this paper, documents are directly coded as indexes
of keywords. The time consumed in both these methods are com-
pared, the results are shown in Fig. 5 (the coding method for neu-
rons of SOM is same as that of related work). The contrast of time
consumed for similarity computation is shown in Table 2 (The sec-
ond column is the traditional high-dimension cosine computation
in VSM mode). It can be seen that both the efficiency of document
coding and similarity computation are improved greatly. For simi-
larity computation, our approach cost much less time compared
with traditional way, thus will be very helpful for fast clustering
as similarity computation is a very frequency operation.

7.4. Comparison of clustering results

We first tested the F measure performance of our system on
DS1. The results are shown in Figs. 6 and 7 respectively. We com-
pare our system with another text clustering system GHSOM (http,
xxxx), which is an open-source widely-known program and also
used for text clustering. It can be seen that the efficiency of our ap-
proach is higher than GHSOM due to our novel coding scheme and
similarity computation. Besides, as we adopted ring-topology for
0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10
of documents (*1000)

tim
e

(:s
)

Method A
Method B

Fig. 5. The comparison of CPU time consumed for document coding (dataset: DS2.
Method A: VSM; Method B: our approach).

Table 2
The contrast of time consumed for similarity computation (dataset: DS2. # of
documents = 10000, # of features = 4329).

of computation VSM (:s) Our approach (:s)

50, 000 4.70 0.13
100, 000 9.42 0.19
200, 000 18.82 0.21
300, 000 28.18 0.26
500, 000 47.26 0.32
800, 000 75.09 0.47
1000, 000 93.98 0.63
2000, 000 187.64 2.25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3 4 5 6 7 8 9 10 11 12
class number

F
m

ea
su

re

Our Approach
GHSOM

Fig. 6. Clustering quality on DS1 (F measure).
SOM, which will give a direct partition for documents, we also
achieved relatively higher F measure than GHSOM which is rectan-
gular topology.

To observe the performance of our approach on bigger datasets,
we tested it on dataset DS2, and use accuracy as the evaluation
measurement. This time, we also manipulate DS2 data set to get
two different parts of documents with different proportion. The
first one, part 1, is selected randomly as the whole clustering, i.e.,
they will be first clustered and some clusters can be formed firstly.
The second part, part 2, is the remaining documents, will be the ob-
jects of the incremental clustering. The values of Proportion are
varied so that we can study the effect. The results are shown in
Tables 3 and 4 separately. Table 3 is the result of 10,000 documents
which is part of DS2, and Table 4 is all documents of DS2.

Several observations can be made from the results.1) First of all,
the clustering quality with proportion equal 50% is the worst per-
forming one in all situations When the proportion is 50%, as the
documents for whole clustering is very few, thus it is hard to assign
the remaining documents, and many of them will create one new
neuron. The time consumed is also much. As 50% documents can
not cover most words, thus it is difficult to classify the remaining
documents, and the clustering quality will be affected. In contrast,
a proportion value of 0.8 � 0.85 leads to much better balance of
quality and efficiency; (2). When documents are large-scale or
the clustering computation is frequent, the method with high
efficiency become more urgent, and there are a bigger time gap
Table 3
Text clustering performance in terms of accuracy (Dataset: 10000 documents from
DS2; Method A: VSM; Method B: Our approach).

Ratio of
part1/
part2

of
features

% of lost
features

Time of
method
A (: s)

Accuracy
of
method
A

Time of
method
B (: s)

Accuracy
of
method
B

100%,
0%

4329 0.00% 1492.58 0.88 162.87 0.87

95%, 5% 4285 1.02% 1386.53 0.87 159.28 0.86
90%,

10%
4249 1.85% 1243.97 0.87 154.53 0.85

85%,
15%

4218 2.56% 1189.32 0.85 149.67 0.85

80%,
20%

4187 3.28% 1061.42 0.83 137.15 0.82

75%,
25%

4146 4.23% 1002.38 0.79 121.20 0.78

70%,
30%

4119 4.92% 891.63 0.75 118.76 0.73

65%,
35%

4068 6.03% 823.78 0.74 107.70 0.70

60%,
40%

4031 6.88% 763.67 0.69 96.75 0.65

55%,
45%

3982 8.02% 712.19 0.67 87.71 0.62

50%,
50%

3929 9.24% 651.52 0.67 79.96 0.61

Table 4
Text clustering performance in terms of accuracy (dataset: all documents of DS2;
Method A: VSM; Method B: Our approach).

Ratio of
part1/
part2

of
features

% of lost
features

Time of
method
A (: s)

Accuracy
of
method
A

Time of
method
B (: s)

Accuracy
of
method
B

100%,
0%

10892 0.00% 37953.43 0.87 3584.62 0.86

95%, 5% 9780 0.83% 35721.89 0.85 3385.21 0.85
90%,

10%
9559 2.10% 33946.42 0.84 3106.66 0.85

85%,
15%

9322 3.55% 31647.81 0.83 2963.64 0.80

80%,
20%

9016 4.67% 29352.59 0.81 2706.12 0.79

75%,
25%

8869 6.23% 28016.06 0.79 2493.25 0.77

70%,
30%

8687 8.15% 25924.52 0.77 2267.10 0.76

65%,
35%

8491 10.22% 23743.23 0.75 2014.54 0.72

60%,
40%

8293 12.32% 20694.84 0.72 1792.93 0.66

55%,
45%

8058 14.86% 18917.32 0.67 1581.50 0.62

50%,
50%

7756 17.99% 16902.71 0.58 1333.19 0.54

 the evaluation of cognition

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
of Docments(*100)

co
gn

iti
on

 re
ca

ll

before clustering
after clustering

Fig. 9. The evaluation of cognition (recall, N0 = 10; N00 = 10).

9332 Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333
saved in our approach; (3) Overall, these results suggest a general
intuitive fact in incremental text clustering. When efficiency is the
preferred measurement, utilizing the formed clustering model will
further reserve a lot of time.

7.5. The analysis of clustering results and the help for cognition

As shown before, the objective of text clustering is by organiza-
tion of massive documents, make people quickly find the docu-
ments they need. We designed the following methods to
evaluate cognition efficiency: (1). through retrieval (local). For all
N documents, select N0 documents and represent them to users.
After that, let users find these N0 documents from the clustering re-
sults, and record the time used. We assume that the less time used,
the better the clustering quality is; (2).Through recall (global). For
N documents, select N0 documents and represent them to users,
then give users N0 + N00documents (N00documents are totally differ-
ent from N documents), and let users find out theN0 documents
according to recall. Suppose the correct number is N0c, then the
accuracy is N0c=N0. The results are shown in Figs. 8 and 9 separately.

The above two methods can evaluate two functions of text clus-
tering system. Sometimes we want to find documents we need;
sometimes we expect to know what these documents are about.
It can be demonstrated that from the beginning, as when docu-
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10
of documents(*100)

co
gn

iti
on

 ti
m

e
(:s

)

before clustering

after clustering

Fig. 8. The evaluation of cognition (retrieval, N0 = 5).
ment number is small, the difference is not clear, as the effect of
clustering can not emerge, and the semantic border of different
documents can still be remembered by people, this conforms to
short-time remember in cogitation science; when there are more
documents, the difference becomes much more apparent, as by
clustering, the semantic partition of documents make people can
remember more content.
8. Conclusions and future research

In this paper, we investigated an efficient feature coding algo-
rithm and similarity computation skills and constructed an effi-
cient text clustering techniques by combining it with existing
SOM clustering algorithms and coding schemes. The feature coding
method which employs indexes of string sets to represent the doc-
ument outperforms other approaches, and enables us to perform
similarity calculation between documents in a very efficient and
accurate way. The quality of clustering achieved significantly sur-
passes the traditional vector space model based approaches. We
have shown that the proposed coding algorithm can capture the
main features of the original document while reducing the redun-
dant information greatly, thus clustering efficiency can be im-
proved. The method was extensively tested with numerous
experiments using well-known benchmark data sets and com-
pared with exact experimental settings against traditional way.

There are a number of future research directions to extend and
improve this work. One direction that this work might continue on
is to improve on the accuracy of similarity calculation between
documents by employing different similarity calculation strategies.
Although our current scheme proved more efficient than VSM rep-
resentation. there is still room for improvement. Although the
work presented here is aimed at SOM clustering and some SOM
advantage has been talked, it could be easily adapted to any other
algorithm such as k-means as well. Our intention is to investigate
the usage of such model on other algorithm or other high-dimen-
sion data clustering and see its effect on clustering effect compared
to traditional methods.
Acknowledgments

This work was supported by Chinese 863 program
(2007AA01Z172) and the National Natural Science Foundation of
China(70773029 and 60603092).
References

Aas, K. & Eikvil, L. (1999). Text categorisation: A survey. Technical Report 941,
Norwegian Computing Center.

Aggarwal, Yu, C. C., & Philip S. (2006). A framework for clustering massive text and
categorical data streams. In Proceedings of the sixth SIAM international conference
on data mining (pp. 479–483.

Y.-c. Liu et al. / Expert Systems with Applications 38 (2011) 9325–9333 9333
Agrawal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering
evolving data streams. In Proceedings of 29th international conference on very
large data bases. Berlin, Germany (pp. 81–92).

Agrawal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected
clustering of high dimensional data streams. In Proceedings of 30th international
conference on very large data bases. Toronto, Canada (pp. 852–863).

Aguado, D., Montoya, T., Borras, L., Seco, A., & Ferrer, J. (2008). Using SOM and PCA
for analysing and interpreting data from a P-removal SBR. Engineering
Applications of Artificial Intelligence, 21(6), 919–930.

Aliguliyev, R. M. (2009). Clustering of document collection – A weighting approach.
Expert Systems with Applications, 36(4), 7904–7916.

Aliguliyev, R. M. (2009). Clustering of document collection – A weighting approach.
Expert Systems with Applications, 36(4), 7904–7916.

Asharaf, S., & Narasimha Murty, M. (2003). An adaptive rough fuzzy single pass
algorithm for clustering large data sets. Pattern Recognition, 36(12), 3015–3018.

Avogadri, R., & Valentini, G. (2009). Fuzzy ensemble clustering based on random
projections for DNA microarray data analysis. Artificial Intelligence in Medicine,
45(2-3), 173–183.

Chow, T. W. S., Zhang, H., & Rahman, M. K. M. (2009). A new document
representation using term frequency and vectorized graph connectionists
with application to document retrieval. Expert Systems with Applications,
36(10), 12023–12035.

Chow, T. W. S., Zhang, H., & Rahman, M. K. M. (2009). A new document
representation using term frequency and vectorized graph connectionists
with application to document retrieval. Expert Systems with Applications,
36(10), 12023–12035.

Cios, K., Pedrycs, W., & Swiniarski, R. (1998). Data mining methods for knowledge
discovery. Boston: Kluwer Academic Publishers.

Fritzke, B. (1995). Growing grid—A self-organizing network with constant
neighborhood range and adaptation strength. Neural Processing Letters,
9–13.

González-Barrios, J. M., & Quiroz, A. J. (2003). A clustering procedure based on the
comparison between the k nearest neighbors graph and the minimal spanning
tree. Statistics & Probability Letters, 62(1), 23–34.

Hammouda, K. M., & Kamel, M. S. (2004). Efficient phrase-based document indexing
for web document clustering. IEEE Transactions On Knowledge And Data
Engineering, 16(10), 1279–1296.

Han, S., Lee, S. G., Kim, K.-H., Choi, C. J., Kim, Y. H., & Hwang, K. S. (2006). CLAGen: A
tool for clustering and annotating gene sequences using a suffix tree algorithm.
Biosystems, 84(3), 175–182.

Hsu, C.-C., & Huang, Y.-P. (2008). Incremental clustering of mixed data based on
distance hierarchy. Expert Systems with Applications, 35(3), 1177–1185.

<http://www.ifs.tuwien.ac.at/�andi/somlib/download/index.html>
Huang, S.-H., Ke, H.-R., & Yang, W.-P. (2008). Structure clustering for Chinese patent

documents. Expert Systems with Applications, 34(4), 2290–2297.
Hung, C., Chi, Y.-L., & Chen, T.-Y. (2009). An attentive self-organizing neural model

for text mining. Expert Systems with Applications, 36(3), 7064–7071. Part 2.
Hung, C., Chi, Y.-L., & Chen, T.-Y. (2009). An attentive self-organizing neural model

for text mining. Expert Systems with Applications, 36(3), 7064–7071. Part 2.
Isa, Dino, Kallimani, V. P., & Lee, Lam Hong (2009). Using the self organizing map for

clustering of text documents. Expert Systems with Applications, 36(5),
9584–9591.

Kärkkäinen, I., & Fränti, P. (2007). Gradual model generator for single-pass
clustering. Pattern Recognition, 40(3), 784–795.

Kaski, S., Honkela, T., Lagus, K., & Kohonen, T. (1998). WEBSOM-self organizing maps
of document collections. Neurocomputing, 21, 101–117.

Keskin, G. A., _Ilhan, S., & Özkan, C. (2010). The fuzzy ART algorithm: A categorization
method for supplier evaluation and selection. Expert Systems with Applications,
37(2), 1235–1240.

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting changes in data streams. In
Proceedings of 30th international conference on very large data bases. Toronto,
Canada (pp. 180–191).

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1), 59–69.

Kohonen, T., Kaski, S., et al. (2000). Self organization of a massive document
collection. IEEE Transaction on Neural Networks, 11(3), 574–585.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Paatero, V., & Saarela, A. (2000). Self
organization of linguistic features and clustering algorithms for topic document
clustering. The Proceedings of 231 ACM SIGIR, 224–231.

Kontostathis, A., & Pottenger, W. M. (2006). A framework for understanding Latent
Semantic Indexing (LSI) performance. Information Processing & Management,
42(1), 56–73.

Lee, C.-H., & Yang, H.-C. (2009). Construction of supervised and unsupervised
learning systems for multilingual text categorization. Expert Systems with
Applications, 36(2), 2400–2410. Part 1.

Lee, C.-H., & Yang, H.-C. (2009). Construction of supervised and unsupervised
learning systems for multilingual text categorization. Expert Systems with
Applications, 36(2), 2400–2410. Part 1.

Lee, C.-H., & Yang, H.-C. (2009a). Construction of supervised and unsupervised
learning systems for multilingual text categorization. Expert Systems with
Applications, 36(2), 2400–2410. Part 1.
Lihua, Wu, Lu, Liu, Jing, Li, & Zongyong, Li (2005). Modeling user multiple interests
by an improved GCS approach. Expert Systems with Applications, 29(4), 757–767.

Liu, Y., Cai, J., Yin, J., & Huang, A. (2006). An efficient clustering algorithm for small
text documents. In Seventh international conference on web-age information
management workshops.

Liu, Y., Wang, X., & Liu, M. (2009). V-SOM: A text clustering method based on
dynamic SOM model. Journal of Computational Information Systems, 5(1),
141–145.

Liu, Y., wu, C., Liu, M., & wang, X. (2009). V-SOM: A text clustering method based on
dynamic SOM model. Journal of computational information systems, 5(1),
141–145.

Lois, R., Olivier, C., & Francois, Y. (2007). Inference and evaluation of the
multinomial mixture model for text clustering. Information Processing and
Management, 43(5), 1260–1280.

Lonardi, S., Szpankowski, W., & Yang, Q. (2006). Finding biclusters by random
projections. Theoretical Computer Science, 368(3), 217–230.

Martı́n-Guerrero, J. D., & Palomares, A. (2006). Studying the feasibility of a
recommender in a citizen web portal based on user modeling and clustering
algorithms. Expert Systems with Applications, 30(2), 299–312.

Louis, M. (2005). Evaluating and comparing text clustering results. In Proceedings of
the IASTED international conference on computational intelligence (pp. 85–90).

Morita, K., Atlam, E., Fuketra, M., Tsuda, K., Oono, M., & Aoe, J. (2004). Word
classification and hierarchy using co-occurrence word information. Information
Processing & Management, 40(6), 957–972.

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-
data algorithms for high-quality clustering. In Proceedings of 18th international
conference on data engineering. San Jose, CA (pp. 685–696).

Pullwitt, Daniel (2002). Integrating contextual information to enhance SOM-based
text document clustering. Neural Networks, 15(8-9), 1099–1106.

Rauber, A., Merkl, D., & Dittenbach, M. (2002). The growing hierarchical self-
organizing map: Exploratory analysis of high-dimensional data. IEEE
Transactions on Neural Networks, 13(6), 1331–1341.

Sahoo, N., Callan, J., et al. (2006). Incremental hierarchical clustering of text
documents. In International conference on information and knowledge
management (pp. 357–366).

Salton, G. (1989). Automatic text processing. In The transformation, analysis,and
retrieval of information by computer. Reading, Mass: Addison Wesley.

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. In
McGraw-Hill computer science series. New York: McGraw-Hill.

Salton, G., Wong, A., & Yang, C. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11), 613–620.

Salton, G., wong, A., & Yang, C. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11), 613–620.

Saraçoğlu, R., Tütüncü, K., & Allahverdi, N. (2007). A fuzzy clustering approach for
finding similar documents using a novel similarity measure. Expert Systems with
Applications, 33(3), 600–605.

Saraçoğlu, R., Tütüncü, K., & Allahverdi, N. (2008). A new approach on search for
similar documents with multiple categories using fuzzy clustering. Expert
Systems with Applications, 34(4), 2545–2554.

Sascha, H., & Michael, W. (2006). Incremental clustering of newsgroup articles.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics, 332–341.

Sebzalli, Y. M., & Wang, X. Z. (2001). Knowledge discovery from process operational
data using PCA and fuzzy clustering. Engineering Applications of Artificial
Intelligence, 14(5), 607–616.

Shi, Z. (2005). Efficient Streaming Text Clustering Source: Neural Networks, 18(5–6),
790–798.

Sinka, M. P., & Corne, D. W. (2005). The BankSearch web document dataset:
Investigating unsupervised clustering and category similarity. Journal of
Network and Computer Applications, 28(2), 129–146.

Song, W., Li, C. H., & Park, Soon Cheol (2009). Genetic algorithm for text clustering
using ontology and evaluating the validity of various semantic similarity
measures. Expert Systems with Applications, 36(5), 9095–9104.

Taeho, J. & Nathalie, J. (2005). Text clustering with NTSO. In Proceedings of the
international joint conference on neural networks (pp. 558–563).

Tang, B., Shepherd, M., Heywood, M. I., & Luo, X. (2005). Comparing dimension
reduction techniques for document clustering. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 292–296.

Tjhi, W.-C., & Chen, L. (2008). A heuristic-based fuzzy co-clustering algorithm for
categorization of high-dimensional data. Fuzzy Sets and Systems, 159(4), 371–389.

Wei, C.-P., Yang, C. C., & Lin, C.-M. (2008). A latent semantic indexing-based
approach to multilingual document clustering. Decision Support Systems, 45(3),
606–620.

Zamir, O., & Etzioni, O. (1999). Grouper: A dynamic clustering interface to Web
search results. Computer Networks, 31(11-16), 1361–1374.

Zhonghui, F., Junpeng, B., & Junyi, S. (2007). Incremental algorithm of text soft
clustering Source: Hsi-An Chiao Tung Ta Hsueh. Journal of Xi’an Jiaotong
University, 41(4), 398–401. +411.

Zhou, J., & Fu, Y. (2005). Clustering high-dimensional data using growing SOM.
Advances in Neural Networks (Lecture Notes in Computer Science), 63–68.

http://www.ifs.tuwien.ac.at/~andi/somlib/download/index.html
http://www.ifs.tuwien.ac.at/~andi/somlib/download/index.html

	Research of fast SOM clustering for text information
	Introduction
	Related works
	Adapted SOM model with ring topology
	One novel document coding scheme for fast text clustering
	Fast similarity computation for text clustering
	Incremental clustering
	Experimental results and discussion
	Experimental setup
	Evaluation methodology
	The experimental comparison of feature representation methods
	Comparison of clustering results
	The analysis of clustering results and the help for cognition

	Conclusions and future research
	Acknowledgments
	References

