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Abstract

We consider visual category recognition in the frame-
work of measuring similarities, or equivalently perceptual
distances, to prototype examples of categories. This ap-
proach is quite flexible, and permits recognition based on
color, texture, and particularly shape, in a homogeneous
framework. While nearest neighbor classifiers are natural
in this setting, they suffer from the problem of high variance
(in bias-variance decomposition) in the case of limited sam-
pling. Alternatively, one could use support vector machines
but they involve time-consuming optimization and computa-
tion of pairwise distances.

We propose a hybrid of these two methods which deals
naturally with the multiclass setting, has reasonable com-
putational complexity both in training and at run time, and
yields excellent results in practice. The basic idea is to find
close neighbors to a query sample and train a local support
vector machine that preserves the distance function on the
collection of neighbors.

Our method can be applied to large, multiclass data sets
for which it outperforms nearest neighbor and support vec-
tor machines, and remains efficient when the problem be-
comes intractable for support vector machines. A wide
variety of distance functions can be used and our exper-
iments show state-of-the-art performance on a number of
benchmark data sets for shape and texture classification
(MNIST, USPS, CUReT) and object recognition (Caltech-
101). On Caltech-101 we achieved a correct classification
rate of 59.05%(±0.56%) at 15 training images per class,
and 66.23%(±0.48%) at 30 training images.

1. Introduction

While the field of visual category recognition has seen
rapid progress in recent years, much remains to be done
to reach human level performance. The best current ap-
proaches can deal with 100 or so categories, e.g. the CUReT

dataset for materials, and the Caltech-101 dataset for ob-
jects; this is still a long way from the the estimate of 30,000
or so categories that humans can distinguish. Another sig-
nificant feature of human visual recognition is that it can be
trained with very few examples, cf. machine learning ap-
proaches to digits and faces currently require hundreds if
not thousands of examples.

Our thesis is that scalability on these dimensions can be
best achieved in the framework of measuring similarities,
or equivalently, perceptual distances, to prototype examples
of categories. The original motivation comes from studies
of human perception by Rosch and collaborators [32] who
argued that categories are not defined by lists of features,
rather by similarity to prototypes. From a computer vision
perspective, the most important aspect of this framework
is that the emphasis on similarity, rather than on feature
spaces, gives us a more flexible framework. For example,
shape differences could be characterized by norms of trans-
formations needed to deform one shape to another, without
explicitly realizing a finite dimensional feature space.

In this framework, scaling to a large number of cat-
egories does not require adding new features 1, because
the perceptual distance function need only be defined for
similar enough objects. When the objects being compared
are sufficiently different from each other, most human ob-
servers would simply assign “entirely different”(∞) to the
distance measure, or, as D’Arcy Thompson quotes [37], het-
erogena comparari non possunt. Training with very few
examples is made possible, because invariance to certain
transformations or typical intra-class variation, can be built
in to the perceptual distance function. Goldmeier’s [13]
study of the human notion of shape similarity, e.g. the priv-
ileging of structural changes, suggests several such charac-
teristics.

For readers who may or may not be swayed by the
philosophical arguments above, we also note the histori-

1Though one could argue that feature sharing keeps this problem man-
ageable [39]



cal evidence that for most well-studied visual recognition
datasets, the humble nearest neighbor classifier with a well
chosen distance function has outperformed other, consider-
ably more sophisticated, approaches. Examples are tangent
distance on the USPS zip code dataset (Simard, LeCun &
Denker [35]), shape context based distance on the MNIST
digit dataset (Belongie, Malik & Puzicha [1]), distances be-
tween histograms of textons on the CUReT data set (Leung
and Malik [22], Varma and Zisserman [40]), and geometric
blur based distances on Caltech-101 (Berg, Berg & Malik
[3]).

We note some pleasant aspects of the the nearest neigh-
bor (NN) classifier: (1) Many other techniques (such as de-
cision trees and linear discriminants) require the explicit
construction of a feature space, which for some distance
functions is intractable (e.g. being high or infinite dimen-
sional) (2) The NN classifier deals with the hugely mul-
ticlass nature of visual object recognition effortlessly. (3)
From a theoretical point of view, it has the remarkable prop-
erty that under very mild conditions, the error rate of a K-
NN classifier tends to the Bayes optimal as the sample size
tends to infinity [8].

Despite its benefits, there is room for improvements on
the NN classifier. In the practical setting of a limited num-
ber of samples, the dense sampling required by the asymp-
totic guarantee is not present. In these cases, the NN clas-
sifier often suffers from the often observed “jig-jag” along
the decision boundary. In other words, it suffers from high
variation caused by finite sampling in terms of bias-variance
decomposition. Various attempts have been made to rem-
edy this situation, notably DANN [16], LFM-SVM [11],
HKNN [41]. Among those, Hastie and Tibshirani [16] car-
ries out a local linear discriminant analysis to deform the
distance metric based on say 50 nearest neighbors. Domeni-
coni and Gunopulos [11] also deforms the metric by feature
weighting, however the weights are inferred from training
an SVM on the entire data set. In Vincent and Bengio [41],
the collection of 15-70 nearest neighbors from each class is
used to span a linear subspace for that class, and then clas-
sification is done based not on distance to prototypes but on
distance to the linear subspaces (with the intuition that those
linear subspaces in effect generate many “fantasy” training
examples).

Instead of distorting the distance metric, we would like
to bypass this cumbersome step and arrive at classification
in one step. Here we propose to train a support vector ma-
chine(SVM) on the collection of nearest neighbors. This
approach is well supported by ingredients in the practice of
visual object recognition.

1. The carefully designed distance function, used by the
NN classifier, can be transformed in a straightforward way
to the kernel for the SVM, via the “kernel trick” formula:
K(x, y) = 〈x, y〉 = 1

2
(〈x, x〉 + 〈y, y〉 − 〈x − y, x − y〉) =

1

2
(d(x, 0) + d(y, 0) − d(x, y)) where d is the distance

function, and the location of the origin(0) does not affect
SVM([33]). Various other ways of transforming a distance
function into a kernel are possible, too 2.

2. SVMs operate on the kernel matrix without reference
to the underlying feature space, bypassing the feature space
operations of previous approaches (e.g. in DANN [16], fea-
ture vectors in Rn have to be defined and their covariances
have to be computed before classifying a query, see Fig. 1.)
In pratice, this translates into our capability to use a wide
variety of distance functions whereas previous approaches
were limited to L2 distance.

3. In practice, training an SVM on the entire data set is
slow and the extension of SVM to multiple classes is not
as natural as NN. However, in the neighborhood of a small
number of examples and a small number of classes, SVMs
often perform better than other classification methods.

4. It is observed in psychophysics that human can per-
form coarse categorization quite fast: when presented with
an image, human observers can answer coarse queries such
as presence or absence of an animal in as little as 150ms,
and of course can tell what animal it is given enough
time [38]. This process of a coarse and quick categoriza-
tion, followed by successive finer but slower discrimination,
motivated our approach to model such process in the setting
of machine learning. We use NN as an initial pruning stage
and perform SVM on the smaller but more relevant set of
examples that require careful discrimination.

We term our method “SVM-KNN” (where K signifies
the method’s dependence on choice of the number of neigh-
bors).

(a) (b)
Figure 1. Difference between DANN and our method on a two
class problem(“o” vs “x”): (a) DANN deforms the metric based
on 50 nearest neighbors (denoted by a dotted circle), on several
query positions, then classifies using NN based on the new met-
ric; (b) our method trains an SVM on the same 50 nearest neigh-
bors(preserving the original distance metric), and directly obtains
local decision boundary.

2For example, take K(x, y) to be exp(−d(x, y)/σ2), in a radial ba-
sis kernel fashion. However, we found no advantage of more complex
transformation in our experiments, hence we stick with the simplest trans-
formation so as to retain the intuitive interpretation.



The philosophy of our work is similar to that of “Local
Learning”, by Bottou and Vapnik [6], in which they pursued
the same general idea by using K-NN followed by a linear
classifier with ridge regularizer. However, by using only a
L2 distance, their work was not driven by the constraint to
adapt to a complex distance function.

The rest of the paper is organized as follows: in sec-
tion 2, we describe our method in detail and view it from
different perspectives; section 3 introduces a number of ef-
fective distance functions, section 4 shows the performance
of our method applied to those distance functions in various
benchmark data sets; we conclude in section 5.

2. SVM-KNN
A naive version of the SVM-KNN is: for a query,
1. compute distances of the query to all training exam-

ples and pick the nearest K neighbors;
2. if the K neighbors have all the same labels, the query

is labeled and exit; else, compute the pairwise distances be-
tween the K neighbors;

3. convert the distance matrix to a kernel matrix and
apply multiclass SVM;

4. use the resulting classifier to label the query.
To implement multiclass SVM in step 3, three vari-

ants from the statistics and learning literature have been
tried([21], [9], [31]) on small number of samples from our
data sets. They produce roughly the same quality of classi-
fiers and the DAGSVM([31]) is chosen for its better speed.

The naive version of SVM-KNN is slow mainly because
it has to compute the distances of the query to all train-
ing examples. Here we again borrow the insight from psy-
chophysics that humans can perform fast pruning of visual
object categories. In our setting, this translates into the prac-
tice of computing a “crude” distance (e.g. L2 distance) to
prune the list of neighbors before the more costly “accu-
rate” distance computation. The reason is simply that if the
crude distance is big enough then it is almost certain that the
accurate distance will not be small. This idea works well
in the sense that the performance of the classifier is often
unaffected whereas the computation is orders-of-magnitude
faster. Earlier instances of this idea in computer vision can
be found in Simard et al. [36] and Mori et al. [25]. We term
this idea “shortlisting”.

An additional trick to speed up the algorithm is to cache
the pairwise distance matrix in step 2. This follows from the
observation that those training examples who participate in
the SVM classification lie closely to the decision boundary
and are likely to be invoked repeatedly during query time.

After the preceding ideas are incorporated, the steps of
the SVM-KNN are: for a query,

1. Find a collection of Ksl neighbors using a crude dis-
tance function (e.g. L2);

2. Compute the “accurate” distance function (e.g. tangent
distance) on the Ksl samples and pick the K nearest
neighbors;

3. Compute (or read from cache if possible) the pairwise
“accurate” distance of the union of the K neighbors
and the query;

4. Convert the pairwise distance matrix into a kernel ma-
trix using the “kernel trick”;

5. Apply DAGSVM on the kernel matrix and label the
query using the resulting classifier.

So far there are two perspectives to look at SVM-KNN:
it can be viewed as an improvement over NN classifier, or
it can be viewed as a model of the discriminative process
plausible in biological vision. From a machine learning per-
spective, it can also be viewed as an continuum between NN
and SVM: when K is small(e.g. K = 5), the algorithm be-
haves like a straightforward K-NN classifiers. To the other
extreme, when K = n our method reduces to an overall
SVM.

Note, for a large data set, or when the distance function
is costly to evaluate, the training of DAGSVM becomes in-
tractable even with state-of-the-art techniques such as se-
quential minimal optimization(SMO) (Platt [30]) because it
needs to evaluate O(n2) pairwise “accurate” distances. In
contrast, SVM-KNN is still feasible as long as one can eval-
uate the “crude” distance for the nearest neighbor search
and train the local SVM within reasonable time. A compar-
ison in time complexity is summarized in Table 1.

DAGSVM SVM-KNN
Training O(Caccun2) none
Query O(Caccu#SV) O(Ccruden + Caccu(Ksl + K2))

Table 1. Comparison of time complexity, where n is the number of
training examples, #SV the number of support vectors, Caccu and
Ccrude the cost for computing accurate and crude distances, Ksl

the length of the shortlist, and K the length of the list participating
in SVM classification.

3. Shape and texture distances

In applying SVM-KNN, we focus our efforts on classi-
fying based on the two major cues in visual object recog-
nition: shape and texture. We introduce several well-
performing distances functions as follows:

3.1. χ2 distance for texture

Following Leung and Malik [22], an image of texture can
be mapped to a histogram of “textons”, which captures the



distribution of different types of texture elements. The dis-
tance is defined as the Pearson’s χ2 test statistic [5] between
the two texton histograms.

3.2. Marginal distance for texture

From a statistical perspective, the χ2 distance above for
texture can be viewed as measuring the difference between
two joint distributions of texture responses: a piece of tex-
ture is passed through a bank of filters, the joint distribution
of responses are vector-quantized into textons, and the his-
togram of textons are compared. Levina et al. [23] found
that the joint distribution can often be well distinguished
from each other by simply looking at the difference in the
marginals (namely, the histogram of each filter response).
Therefore, another distance function for texture is to sum
up the distances between response histograms from each fil-
ter. This is used in our experiments for real-world images
that may contain too many types of textons to be reliably
quantized.

3.3. Tangent distance

Defined on a pair of gray-scale images of digits, tangent
distance [36] is defined as the smallest distance between two
linear subspaces (in the pixel domain Rn where n is the
number of pixels), derived from the images by including
perturbations from small affine transformation of the spatial
domain and change in the thickness of pen-stroke (forming
a 7-dimensional linear space).

3.4. Shape context based distance

The basic idea of shape context [1] is as follows: The
shape is represented by a point set, with a descriptor at a
control point to capture the “landscape” around that point.
Those descriptors are iteratively matched using a deforma-
tion model. And the distance is derived from the discrep-
ancy left in the final matched shapes and a score that denotes
how far the deformation is from an affine transformation.

3.5. Geometric blur based distance

A number of shape descriptors can be defined on a gray
scale image, for instance the shape context descriptor on
the edge map(e.g. [26]), or the SIFT descriptor([24]), or the
geometric blur descriptor([4]). In our experiments, we fo-
cus on the geometric blur descriptor. Usually defined on an
edge point, the geometric blur descriptor applies a spatially
varying blur on the surrounding patch of edge responses.
Points further from the center are blurred more to reflect
their spatial uncertainty under deformation. After this blur-
ring, the descriptors are normalized to have L2 norm 1.
They are used in two kinds of distances in section 4.4.

3.6. Kernelizing the distance

Asymmetry: (of shape context based distance and geo-
metric blur based distance) We simply define a symmetric
distance: d(x, y) + d(y, x), because in practice the discrep-
ancy |d(x, y) − d(y, x)| is small.

Triangle Inequality: (of tangent distance, shape context
based distance and geometric blur based distance) Namely,
the inequality d(x, y) + d(y, z) ≥ d(x, z) does not hold at
all times, which prevents the distance from translating into
a positive-definite kernel. A number of solutions have been
suggested for this issue [29]. Here, we compute the small-
est eigenvalue of the kernel matrix and if it is negative, we
add its absolute value to the diagonal of the kernel matrix.
Intuitively, if we view the kernel matrix as a kind of “sim-
ilarity measure”, adding a positive constant to the diagonal
means strengthening self-similarity, which should not affect
the sense of expressed similarity among the examples.

4. Performance on benchmark data sets
4.1. MNIST

The MNIST data set of handwritten digits contains
60,000 examples for training and 10,000 for test: each set
contains equal number of digits from two distinct popu-
lations: Census Bureau employees and high school stu-
dents [20]. Each digit is a 28x28 image, except for shape
context computation where each digit is resized to 70x70
image. Some example digits from the test set are shown in
Fig. 2(a). A number of state-of-the-art algorithms perform
under 1% error rate, among which a shape context based
method performs at .67%.

Two distances are used in this experiment: L2 and shape
context distance. For shape context, since its error rate may
be close to the Bayes optimal, we use only the first 10,000
training examples so as to leave room of improvement (on
the 10,000 examples we perform a 10 fold cross validation).
To rely purely on shape context and not on image intensi-
ties, we also drop the “appearance” term in [1].

A summary of results is in Table 2. Note that while
L2 distance is straightforward for our method, a number
of workarounds were necessary for the shape context based
distance. Still, in both cases the performance improves sig-
nificantly.

L2 SC (limited training)
SVM-KNN 1.66 (K = 80) 1.67 (±0.49) (K = 20)
NN 2.87 (K = 3) 2.2 (±0.77) (K = 1)

Table 2. error rate on MNIST (in percent): the parameter K for
each algorithm is selected according to best performance(in range
of [1,10] for NN and [5, 10, .., 100] for SVM-KNN). In SVM-
KNN, the parameter Ksl ≈ 10K, larger Ksl doesn’t improve the
empirical results.



(a)
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Figure 2. Data sets: (a) MNIST (b) USPS (c) CUReT (d) Caltech-101

4.2. USPS

The USPS data set contains 9298 handwritten digits
(7291 for training, 2007 for testing), collected from mail
envelopes in Buffalo [19]. Each digit is a 16x16 image. A
collection of random test samples is shown in Fig. 2(b). It is
known that the USPS test set is rather difficult: the human
error rate is 2.5% [7].

We try two types of distances: L2 and tangent distance.
(Shape context is not tried because the image is too small
to contain enough details for estimating deformation). For
tangent distance, each image is smoothed with a Gaussian
kernel of width σ = 0.75 to obtain more reliable tangents.

L2 tangent distance
SVM-KNN 4.285 (K = 10) 2.59 (K = 8)
NN 5.53 (K = 3) 2.89 (K = 1)
DAGSVM 4.4 (Platt et al. [31]) intractable
HKNN 3.93 (Vincent et al. [41]) N/A

Table 3. error rate on USPS (in percent): the parameter K for
SVM-KNN and NN is chosen according to best performance, re-
spectively.

Table 3 shows that in the L2 case, the error rates of SVM-
KNN and DAGSVM are similar. However, SVM-KNN is
much faster to train because each SVM only involves a lo-
cal neighborhood of 10 samples, and the number of classes
rarely exceeds 4 within the neighborhood. (In our exper-
iments, the cost of training 10 examples from 4 classes is
much smaller than the cost of the usual nearest neighbor
search.) In contrast, DAGSVM involves training a SVM
on all 45(=10x9/2) pairs of different classes, and computa-
tion of pairwise distances on all training examples. With the
more costly tangent distance function, DAGSVM becomes
intractable to train in our experiment, whereas the optimal

SVM-KNN (where K = 8) is almost as fast as the usual NN
classifier because the additional cost of training an SVM on
8 examples is negligible. This reflects the comparison of
asymptotic complexity in section 2.

Also in the L2 case, another adaptive nearest neighbor
technique, HKNN(Vincent et al. [41]), performs quite well.
Unfortunately, it operates in the input space and therefore
cannot be extended to a distance function other than L2.

In the tangent distance case, it is quite remarkable that
SVM-KNN can improve on the performance of NN with
very small additional cost, even though the latter is per-
forming very well already (in comparison to human perfor-
mance). We are therefore encouraged to think that SVM-
KNN is an ideal classification method when the proper “in-
variance” structure of the underlying data set is captured in
the distance function.

4.3. CUReT

CUReT(Dana et al. [10]) contains images of 61 real
world textures(e.g. leather, rabbit fur, sponge, see Fig. 2(c))
photographed under varying illumination and viewing an-
gle. Following [40], a collection of 92 images (where the
viewing angle is not too oblique) are picked from each cat-
egory, among which half are randomly selected as training
and the rest as test.

From [40], we take the variant of the texton method that
achieves the best performance on CUReT and substitute the
last step of NN classifier with our method:

In terms of error rate, as in the case of USPS, SVM-
KNN has a slight advantage over DAGSVM , both of which
are significantly better than the state-of-the-art performance
reported in [40]. However, DAGSVM (equivalently, SVM-
KNN when K = n) was very slow: a total of 61x60/2=1830
pairwise classifiers to train (15130 CPU secs), whereas
SVM-KNN is faster and offers a trade-off between time and



χ2

SVM-KNN 1.73 (±0.24) (K = 70)
NN 2.53 (±0.28) (K = 3) [40]
DAGSVM 1.75 (±0.25)

Table 4. error rate on CUReT (in percent): error rate and std dev
obtained from 5 times 2 fold cross validation. The parameter K

for SVM-KNN and NN is chosen according to best performance,
respectively.

performance (Fig. 3).
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Figure 3. Trade-off between speed and accuracy of SVM-KNN in
the case of texture classification

4.4. Caltech-101

The Caltech-101 data set (collected by L. Fei-Fei et
al. [12]) consists of images from 101 object categories and
an additional background class, making the total number
of classes 102. The significant variation in color, pose and
lighting makes this data set quite challenging. A number
of previously published papers have reported results on this
data set, e.g Berg et al. [3], Grauman and Darrell [14], and
Holub et al. [17]. Berg et al. [3] constructed a correspon-
dence procedure for matching geometric blur descriptors
and use it to define a distance function between two images,
the resulting distance is used in a NN classifier. In Grauman
and Darrell[14], a set of local image features are matched in
an efficient way using a pyramid of histograms. The result-
ing matching score forms a kernel that is used in an SVM
classifier. In Holub et al. [17], Fisher scores on each image
are obtained by a generative model of the object categories.
An SVM is trained on a Fisher kernel based on these scores.
In these proceedings, a number of groups [18, 27, 15, 42],
in addition to our paper, have demonstrated results on this
dataset using a common methodology.

We present two algorithms on this data. The difference
lies in the choice of the distance function.

A. Algorithm A
Unlike the previous data sets, in this setting we have both

shape and texture. For the shape part, geometric blur fea-

tures sampled at a subset of edge points ( Section 3.5, details
in [3]) are used. For the texture part, the marginal distance
for texture (see section 3.2) is used, where the filter bank is
Leung-Malik [22]. The distance function is defined as:

DA(IL → IR) =
1

m

m
∑

i=1

min
j=1..n

‖FL
i − FR

j ‖2

DA(IL, IR) = DA(IL → IR) + DA(IR → IL)

+ λ

nfilt
∑

k=1

‖hL
k − hR

k ‖L1

(1)

Here DA(IL, IR) is the distance between left and right im-
ages. The computation is based on geometric blur features
FL

i (denoting i’th feature in the left image, respectively for
FR

j ) and texture histograms hL
k (denoting the histogram of

the k’s filter output on the left image, respectively for hR
k ).

Note that the texture histograms are normalized to sum to
1. Rather large scale geometric blur descriptors are used,
(radius ∼70 pixels), and λ = 1

8
is set based on experiments

with a small collection of images from about 10 classes.
To stay as close to the paradigm of the previous work on

this dataset using geometric blur features, we followed the
methodology of Berg et al. [3], randomly picking 30 im-
ages from each class and splitting them into 15 for training
and 15 for test. We also reverse the role of training and test.
The correctness rate is the average. Table 5 shows the re-
sults which can be compared to [3] (45%) and [2] (52%), all
corresponding to 15 training images per class. Compared to
the baseline classifiers (NN and SVM), SVM-KNN has a
statistically significant gain.

Algo. A
SVM-KNN 59.08(±0.37) (K = 300)
NN 40.98 (±0.47) (K = 1)
DAGSVM 56.40(±0.36)

Table 5. Correctness rate (=1-error rate) of Algorithm A with 15
training images per class (in percentage, and std dev.). Parameter
K for SVM-NN and for NN are chosen respectively according to
best performance.

B. Algorithm B
In our previous work on Caltech-101 (Berg, Berg and

Malik [3]), we sought to find shape correspondence in a
deformable template paradigm. However, due to the special
character of the Caltech-101 data set (objects are often in
the center of image, and the scale does not vary much), a
crude way of incorporating spatial correspondence is to add
a first-order geometric distortion term when geometric blur
features are being compared, where position is measured
from center of image (cf. a more general approach based
on second order geometric distortion, comparing pairs of
points in [3]).



In this case, the overall distance function is

DB(IL → IR) =
1

m

m
∑

i=1

min
j=1..n

[

‖FL
i − FR

j ‖2 +
λ

r0

‖rL
i − rR

j ‖

]

DB(IL, IR) = DB(IL → IR) + DB(IR → IL)

(2)

and rL
i denotes the pixel coordinates of the i’th geometric

blur feature on the left image, w.r.t. the image center (re-
spectively for rR

j ). r0 = 270 is the average image size. We
used a medium scale of geometric blur(radius ∼42 pixels),
and λ = 1

4
.

Algorithm B is tested with the benchmark methodology
of Grauman and Darrell [15], where a number (say 15) of
images are taken from each class uniformly at random as the
training image, and the rest of the data set is used as test set.
The “mean recognition rate per class” is used so that more
populous (and easier) classes are not favored. This process
is repeated 10 times and the average correctness rate is re-
ported. Our experiments use the DAGSVM classifier. (We
have yet to run SVM-KNN in this setting but the perfor-
mance of SVM-KNN can only be better because it includes
DAGSVM as a special case for K = n. ). 3

The performance for Algorithm B is plotted in Fig. 4,
alongside other current techniques (published or in press),
in the same format as that of Grauman and Darrell [15]. It
is noteworthy that Algorithm B as well as the techniques
of Wang et al and Lazebnik et al, have attained correctness
rates in the neighborhood of 60%, a significant improve-
ment over the first reported result of 17% only a couple
of years ago. Numbers, for the 15 and 30 training images
cases, can be found in table 6. The confusion matrix for 15
training images is in Fig. 5.

Ommer and Buhmann [28] used a different evaluation
methodology; for which our correctness rate is 63%, com-
pared to 57.8% of [28]

# trainAlgo. B [18] [2] [27][15] [42]
15 59.05(±0.56)56.4 52 51 49.5244
30 66.23(±0.48)64.6(±0.8)N/A56 58.2363

Table 6. Correctness rate with 15 or 30 training images per class
on Caltech-101 (in percentage, and std dev. where available)

5. Conclusion
In this paper we proposed a hybrid of SVM and NN,

which deals naturally with multiclass problems. We show
excellent results using a variety of distance functions on
several benchmark data sets.

3In our experiments, we have found virtually no difference under this
evaluation methodology vs that of Berg et al. [3].
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Figure 4. Correctness rate of Algorithm B (plotted the same for-
mat as in [42] and [15]), best viewed in color, Results from
this work and others: Lazebnik, Schmid & Ponce [18], Berg [2],
Mutch & Lowe [27], Grauman & Darrell [15], Berg, Berg &
Malik [3], Wang, Zhang & Fei-Fei [42], Holub, Welling & Per-
ona [17], Serre, Wolf & Poggio [34], and Fei-Fei, Fergus & Per-
ona [12].

Algorithm B confusion matrix with train=15 per class
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Figure 5. Confusion matrix of Algorithm B with 15 training
images per class, where the rows denote true label and the
columns denote reported label. The most confused pairs are
(schooner,ketch), (waterlily,lotus), (platypus,mayfly), (octopus,
starfish).
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